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The Squire transformation, known in the theory of hydrodynamic stability [1, 2], makes
it possible to reduce the problem of 2 plane~parallel isothermal motion with respect to
spatial perturbations to a problem of plane perturbations,

Formulas derived by Squire for the transformation of the Reynolds and the wave num-
bers allow the derivation of complete information on stability from a solution of the
two-dimensional boundary value problem of Orr-Sommerfeld, It was found that plane
perturbations are more dangerous because smaller (as compared to spatial perturbations)
critical Reynolds numbers correspond to them,

The problem becomes more complicated in the case of a nonisothermal plane-parallel
flow, The stability of a plane Poisuille flow between horizontal parallel planes heated
to different temperatures was considered in [3], A wansformation similar to that of
Squire is applicable in this case also, but contrary to the isothermal case, the spatial per-
turbations at certain specific values of parameters are here relatively more dangerous,

The stability relative to spatial perturbations of free
stationary convective motions (due to temperature
nonuniformity) between infinite parallel planes, heated
to different temperatures and arbitrarily orientated in
the gravitational field, is considered below (Fig. 1),

Transformations of the Grashof and wave numbers,
and of the angle of the layer with the vertical are
derived, thus reducing the problem of stability with
respect to normal spatial perturbations to the equiva-
tent problem of plane perturbations, As the result of
these transformations together with stability investi-
gations with respect to plane perturbations [4], diagrams
of convective flow stability with respect to three-
dimensional perturbations were obtained,
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It follows from these results that, when the layer is verticalorin the case of an inclined
layer with its upper plane at the higher temperature, plane perturbations are more danger-
ous, If, however, the lower plane is at the higher temperature, two instability mecha-
nisms are at work : the hydrodynamic instability due to the effect of two oppuosite con-
vection streams and the convective (the Rayleigh) instability of the fluid heated from
below, The question whether the plane, or the three~-dimensional perturbations are in
this case more dangerous is essentially determined by two parameters: angle of inclina-
tion of the layer, and the Prandtl number,

1, Let us consider a layer of fluid bounded by parallel infinite planes z = +-h
maintained at constant temperatures T © (see Fig, I on which the coordinate axes are
shown). Under these conditions a stationary closed plane-parallel flow with a third power
velocity profile and linear temperature distribution will be generated in the fluid

vy = I/ (z° — ) cos & = f () cos a, To=—2z (1.1)

Here, and in the faNowing, dimensionless parameters are used with the same reference
dimensions as in [4].
Equations of small perturbations (v, T, p) of basic motion are of the form

F IV v+ (W) v = —Vp+ Av+ TT (t.2)
A o GIWT v VT =4AT,  divv=0 (1.3)
g6 A
(6=~ p=1)

Here ¥ is the unit vector directed vertically upwards, and € and P are respectively
the Grashof and the Prapdil numbers,
At the layer boundarfes the velocity and temperature perturbations vanish
v=0,T=0 (zx=41) (1.4
We introduce normal spatial perturbations v,, vy, 7;, I, p dependent on time
and coardinates ¥ and z in accordance with law exp [— At + i (ky + k. z)], where
A is 2 decrement, k, and k, are the wave numbers defining the perturbation periodicity
along axes y and z ,respectively, From (1,2)—(1.4) we obtain the following amplitude
equations (the prime denotes differentiation with respect to the lateral coordinatez) :
—Avgy + ik,Gecosa fop = — P + (0"—K'v) —sinaT  (1.5)
— A, + ik,G cosafyy, = — ikyp + (v,” — K*2,) (1.6)
~— AT, + tk,G cosafv, + Geosa fo, =

= — ik, p + (v, — Fv;) + cosal (1.7}

— AT + ik,Geosa fT + GT, v,= P (T* — I*T) (1.8)
of + ity +hv) =0 (B =k2 + &Y (1.9)

and the boundary conditfoms
9:=0¥=0==T=0 (£=i1) (1.10)

We shall now formulate the boundary value problem of normal plane perturbation
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amplitudes, These perturbations are of the form
(le’ Y1z Th pl) ~ exp ('_ }"lt -+ iklz)

(All of the unknown functions and parameters, related to the problem of plane pertur-
bations, will be denoted in the following by subscript 1),

The equations of plane perturbation amplitudes may be derived from (1. 5)~(1. 9) by
setting v, == O and b, =0

— My, + hiGy cos oifvy, = — py + (0" —KPon,) — sinog Ty (1.11)
— My, + ik Gy c0s oy fvr, + Gy cos oyf v, =

= — ikypy + (v," — k®vy,) + cos oy Ty (1.12)
— MTy + ikGy cosanfTy + G Ty vny = Pyt (T — kPTh) (1.13)

le, + iklvlz =0 (114)
The boundary conditions for plane perturbations are
Vg =0, =11 =0 (= 41) (1.15)

We shall now show the existence of transformations by means of which the spatial
problem (1, 5)~(1, 10) may be reduced to a plane problem (1, 11)—~(1, 15),

f
If we assume vy = vrey kyvy + kv = Eyon, (1.16)
then the continuity equation (1, 9) takes the form of (1, 14),

In order to transform Eq, (1. 5) into (1, 11) we have to supplement (1, 16) by the fol-
lowing transformations
8 A=Ak, Gecoso = kG cos0y, p=p
sin al' = sin a7}, k2 =k k= k2 (1.17)

Combining (1.6} and (1, 7) yields (1. 12}, if we specify additionally the condition

kycosa T =k cosay Ty (1.18)
Finally, the identification of the heat conduction Eqs, (1. 8) and (1, 13) imposes two
more conditions sin & G = sin 0,Gy, P =p (1.19)

Functions ¥y, 1, 13 defined by relationships (1, 16)—(1, 19) satisfy boundary con-
ditions (1. 15).

The system of Eqs, (1, 16)—(1, 19) is consistent, and yields two transformations which
reduce the spatial perturbation problem to the corresponding probleim of plane perturba-
tions { *).

In particular, the Grashof and the wave numbers and the layer inclination angle are

transformed as follows: 1)/ SiT% o - (kwjk )cos® o

=YkF+k? kitga ==k tg u (1.20)

Thus, the critical number & of three-dimensional perturbations at wave numbers k,

*} The spectrum branch corresponding to the vy-perturbations is lost in this reduction to
a plane problem, It is readily ascertained by Eq, (1,6) that such perturbations, as in the
case considered by Squire {1], become attenuated independently of the basic velocity
profile,
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and k; in the case of a layer inclined at angle « to the vertical may be determined from
formula (1, 20), if the critical Grashof number G; for plane perturbations at wave number
k; in a layer inclined at angle «; (different from @) is known,

2. We shall consider two particular cases,

If the layer is horizontal (z = 4 90°), the stationary motion velocity vanishes (see
(1. 1)), and the problem reduces to the determination of conditions of equilibrium stabi-
1lity of the horizontal fluid layer heated either from below (& = — 90°) or from above
{a = 90°). 1t follows from (1, 20) that in this case a; = -+ 90° and G = Gy.

Thus, the critical numbers for spatial and plane perturbations are the same (the known
degeneration of the Rayleigh instability limit of convection "cells” and " ridges”).

In the case of a vertical layer (@ = 0) we obtain from formulas (1, 20)

CZ;ZO, G»—'=Gl IC}/kz

As ky/ki=k; | (ky? -+ kD" <1, hence G > Gy, i.e. in this case, as in that of
isothermal motion, higher critical Grashof numbers correspond to three-dimensional
perturbations, and consequently, plane perturbations (k;, == 0) are the more dangerous,

We shall now consider the case of an arbitrary orientation of the layer, The solution
of the problem of convective motion stability with respect to plane perturbations was
derived in [4], where the dependence of the minimum critical Grashof numbers §,, on
the angle of inclination o and the Prandtl number are given, Critical parameters of
spatial perturbations can be evaluated and defined by using formulas (1,20). For evalua-
tion it is convenient to assume parameter a = k; / x1 which varies within limits
0 < a < 1,as fixed, The value a = 1 corresponds to plane perturbations (k, = 0 relates
to ridges with horizontal axes). The value @ = 0 corresponds to perturbations periodically
dependent on the horizontal coordinate y and independent of z (k; = 0 relates to ridges
the axes of which are parallel to the basic motion velocity),

In the case of spatial perturbations the relationship G = G(ky, k;) defines the neutral
surface (an analog of the neutral curve Gy(k1) of plane perturbations), The intersection
of this surface with the plane passing through axis G corresponds to the fixed value of
2, and the intersection curve corresponds to the minimum g, which depends on « and
2. For given values of @ and a the critical numbers ¢ and G, differ in accordance
with (1,20) (for all wave nurabers) by one and the same factor (sinay + a2 cos?ay).
Thus, operator (1, 20) transforms the minimum point Gim of the plane problem neutral
curve into the same intersection point Gy, of the neutral surface,

Computation results of minimum critical numbers G, of spatial perturbations are
shown on Figs.2 to 4 for various values of parameter a , These computations were made
for three values of the Prandtl number, using formulas (1, 20) and the relationship Gy(ki)
of [4].

The graphs shown in Figs,2 and 3 relate to Prandtl numbers P = 5 and 2 = 1. It will
be seen from these that fora > 0(a vertical layer, or an inclined one with its upper sur-
face at the higher temperature) the G, («) plane perturbations (a = 1)are the more dan-
gerous, If @ < 0(an inclined layer with its lower surface at the higher temperature), the
spatial perturbations become more dangerous in a wide field of variation of o, with G,
reaching its absolute minimum at ¢ = (), As already indicated, perturbations periodic
along the horizontal y -coordinate and independent of z(k, = 0}, correspond to the latter
value of .

(2.1)
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The critical number Gy, () may be found for this critical limit case directly from the
general boundary value problem of spatial perturbations, as defined by (1, 5)~(1.18).
Assuming %, = 0 we obtain from Eqgs, (1. 5),{1.6),{1.8) and (1. D)

—Ap, =—p -+ v — k) —sinal, — Aoy = — ik p+(z," — k7))
v +ik,p, =0, — AT+ 6Tyv, =P T" — k*T) 2.2)
with homogeneous boundary conditions
vz=ry=T=0 {£= +1) {2.3}

This boundary value problem is independent of the basic motion profile and coincides
with the Rayleigh problem of perturbations in a sta-

b tionary fluid layer (*), The critical Grashof number,
04| Vo5 ;  derived in the usual manner from the condition A =0
by minimizing G(ky),is expressed-by

— 6, Psing = 1708/16 (2.4
7-1 (Factor 1/, is consequent to the selection of the
layer half~width and half the temperature difference
at its boundaries, as unit of distance and temperature
a-1 h =0 | respectively), Thus, for perturbations at k;, = 0 we
have G = 106.7

g m~ —Psinag @5
/ P=3 Spatial perturbations at &, = 0 correspond to the
, absolute minimum Gy, in the angle range —90° <

L= " g & <u< o, where o, is defined by the intersection of
curves Gp{e) corresponding to parameters a = Dand

2000

w

Fig. 2 a == 1.The valpe of a* depends on the Prandtl num-
ber, thus, for P == 5 and P = 1 we have respectively
’”F}. [ oy = — 2.5%°and oy = - 13°. With decreasing Prandtl
71 | 42/ |, number the intersection point moves to the left,
Wl /
oo )
1 1 ay 2.5 ZI/-I
400 o
9] /
ZH p=1
w2 & " /
P=02
o | =
L T T A " T

Fig. 3 Fig. 4

*) If k; = 0, the peruxrbations are not plane, The velocity component z, is not zero
and may be found from Eq. (1. 7).



Stability of plane-parallel convective motion 835

tending to o, = — 90°. Thus, at sufficiently small Prandtl numbers (see Fig, 4, where

£ == (.2) the absolute minimum moves towards perturbations at ¢ = { (plane perturba-
tions) for all angles @ > — 90° (at a = — 90° the previously mentioned degeneration
occurs).

It has been already shown [4], that crisis of a convective flow at various angles of
inclination is due to two physically different mechanisms of instabiiity, In the region
of angles close to —90° (the Rayleigh region) the crisis is the result of the convective
instability of the fluid heated from below, while outside of the Rayleigh region it is
caused by the hydromechanical mechanism of the instability of the two contrary con-
vective streams,

The results of the present investigation of stability with respect to spatial perturbations
confirm the change of the instability mechanism by a change of the angle of inclination,
In the Rayleigh region the instability is, in fact, due to spatial perturbations whena = 0;
the crisis of such perturbations is related to the unstable temperature stratification only,
and is independent of the fluid stationary motion (the velocity of this motion at angles
close to —90° is low, and this motion itself is hydrodynamically stable), In the case of
a vertical layer, and even more so at & > 0, this instability can only be caused by the
instability of the contrary convective streams, and then the plane perturbations (& = 1)
are the more dangerous, as in the case of plane-parallel flows of an isothermal fluid,

If the Prandil number is small (low viscosity), even a small deviation of the layer
from the horizontal pesition (& X — 90°) results in an intensive convective motion, and
in this case, even at angles close to —90° (i.e, in the Rayleigh region), the instability
is of a hydrodynamic nature, and related to the development of plane perturbations,

BIBLIOGRAPHY

1, Sqguire,H.B,, On the stability of three-dimensional disturbances of viscous
fluid flow between parallel walls, Proc.Roy.Soc., Vol, 142, Neg47, 1933,

2, Lin, C,C,, Theory of hydrodynamic stability (Russian translation), M., Izd,
inostr, 3it,, 1958,

3. Gage,K,5, and Reid, W, H,, The stability of thermally stratified plane
Poiseuille flow, ], Fluid Mech,, Vol, 33, 1968,

4, Birikh,R,V,, Gershuni,G,Z,, Zhukhovitskii, E, M, and Ruda-
kov, R, N., Hydrodynamic and thermal instability ofa steady convective flow,
PMM Vol, 32, N2, 1968,

Translated by J, 1. D,



