
830 L. N. Ter-Mkrtich’ian 

3. Mindlin, R, D. and Tiersten, H. F., Effects of couple stresses in linear 
elasticity, Arch. Rational Mech. and Analysis, Vol. 11, @5, 1962. 

4. Mindlin, R. D, , Influence of couple-stresses on stress concentrations, Experi- 

mental Mech., Vol. 3, Wl, 1963. 

5. Papkovich, P. F., On a form of solution of the two-dimensional problem of 

the theory of elasticity for a rectangular strip. Dokl. Akad. Nauk SSSR, Vol. 27, 

N94, 1940. 
6, Schaefer, H. I Das ~osserat-Kontinnum, ZAMM, Bd. 47, H. 8, 1967. 

7. Schijve, J., Note on couple stresses. J. Mech. and Phys. Solids, Vol. 14,1966. 

Translated by A. R. R, 

ST~~LI~ OF PL~E-P~~~ CO~CTI~ NOTION 

WITH RESPECT TO SPATIAL PERTURBATIONS 
PMM Vol. 33, Np5, 1969, pp. 855-860 

G. Z. GERSHUNI and E. M. ZHUKHOVITSKII 
(Perm’) 

(Received February 4, 1969) 

The Squire transformation, known in the theory of hydrodynamic stability [l, 21. makes 
it possible to reduce the problem of a plane-parallel isothermal motion with respect to 
spatial perturbations to a problem of plane perturbations. 

Formulas derived by Squire for the transformation of the Reynolds and the wave num- 
bers allow the derivation of complete information OR stability from a solution of the 
two-dimensional boundary value problem of Orr-Sommerfeld. It was found that plane 

perturbations are more dangerous because smaller (as compared to spatial perturbations) 
critical Reynolds numbers correspond to them. 

The problem becomes more complicated in the case of a nonisothermal plane-parallel 
flow. The stability of a plane Poisuille flow between horizontal parallel planes heated 
to different temperatures was considered in [3]. A ~ansfor~tion similar to that of 

Squire is applicable in this case also, but contrary to the isothermal case, the spatial per- 

turbations at certain specific values of parameters are here relatively more dangerous. 

The stability relative to spatial perturbations of free 
stationary convective motions (due to temperature 

nonuniformi~) between infinite parallel planes, heated 
to different temperatures and arbitrarily orientated in 

the gravitational fieid. is considered below (Fig. 1). 
Transformations of the Grashof and wave numbers, 

and of the angle of the layer with the vertical are 
derived, thus reducing the problem of stability with 
respect to normal spatial perturbations to the equiva- 

lent problem of plane perturbations. As the result of 
these transformations together with stability investi- 
gations with respect to plane perturbations [4], diagrams 
of convective flow stability with respect to three- 
dimensional perturbations were obtained. 



It fullows from these results that. wheo the layer is vertlcaI,or in the case of ax in- 

layer with its upper plane at the Ngher temperature, plane perttubatiom are mom danger- 
ous, If, however, the lower plane is at the ltigbes temperature, two instability mecha- 
nisms are at work: the bydrudynamic instability due to the effkct of two oppftet car- 
vection streams and the convective (the Rayleigh} instabiIity of the fluid heated from 
below. The question whether the pIane,ar the three-dime&& pernu%aPiom am in 

tbis case mQ3ce dangerous is essendalIy determined by two parameters: angle uf ixcllna- 
tion of the Iayer. and the Prandtl number, 

3,. Let us consider a layer of fluid bouded by parallel infin@ planes z = & h 
maintained at umstant temperatures F 8 (see Fig. f on which t&e -ate axes are 

shown). Under these conditions a stationary closed plane-parallel Row with a third power 

v@Iacity pmffle and Linear temperature distribution will be generated in tbe kid 

a6=‘/~(P--}cosa=f(~)ccosa, To=-2 0 *i) 

Here, and in tbe faowing, dimensinuless parameters are used with the same reference 
d&men&m as in [4& 

Equatkms of small perrmkat&m (v, II”, p) of basic motion axe of &e foam 

~+Gt(~)v~+(~gv)~I=-v~$~~+~~ @.2) 

Here r is the unit vecrxx dimcoed vertlcaIIy upwards, and 6: and P ate reqectI=Iy 

tfieGmsb~andtbeRandtirmmbers_ 

At the layer boundaries tlxe v@Iacity and temperarurp pertmbatiaus vani& 

v=cI, T=O fz=*i) (M 

We introduce normal spatial pertmbatious v,, uy, a,, T, p dependent on time 

axrd cax&ates y arid 2 ID acc&auce with law exp [- ti + i (kuy + kz2)J, where 
2, is a decrement, ku and kare the wave rmmbets defin&g Thai pert&at&x periodicity 
along axes y and z , respectively. From (1.2)-(X.4) we obtain the fXowing amplitude 
equations (the prime denotes diffkentiati~ with respect ta the lateral conrdinam~) : 

-Au, + ik,Gcosafv, = -p’ +(o/--zQ -sinaT lf.5) 

- &vu + ikzG cos ctfq, = - Ike + (vu- - k%J P.6) 
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amplitudes, These perturbations are of the form 

(Y,, Q,, Tt, ~1) N exp (- hit + L&z) 

(All of the unknown functions and parameters, related to the problem of plane pertur- 

bations, will be denoted in the following by subscript 1). 
The equations of plane perturbation amplitudes may be derived from (1.5)-(1.9) by 

setting ut, = 0 and kV = 0 

- h,Vl, + ik,Gl cos atf q, = - pl’ + (vl”,-Ply,) - sinarT, (1.11) 

- A1vlr + ik,G1 cos alfvl, + G1 cos alf’vlx = 

= - ik,p, + (q,” - k12q,) + cos CQT, (1.12) 

- lilTI + iklGI cos a,fTl + GlTo’vl, = PI-’ (2’1” - k,‘Tl) (1.13) 

vii’ + iklvlz = 0 (1.14) 

The boundary conditions for plane perturbations are 

Vlx = ?,& = Tl = 0 (5 = * 1) (1.15) 

We shall now show the existence of transformations by means of which the spatial 
problem (1.5)-( 1.10) may be reduced to a plane problem (X.11)-( 1.15). 

If we assume 
V J = VI,, k,V, + k,Vz = hV1, (1.16) 

then the continuity equation (1.9) takes the form of (1.14). 
In order to transform Eq. (1.5) into (1.11) we have to supplement (1.16) by the fol- 

lowing transformations 
lL=lLI,k=Gcosa=k~G,cosa,, p=pl 

sin aT = sin alT1, k2 = k,2 + kz2 = k12 (1.17) 

Combining (1.6) and (1.7) yields (1.12), if we specify additionally the condition 

k;: cos cx T = kl cos arTI (1.18) 

Finally, the identification of the heat conduction Eqs. (1. 8) and (1.13) imposes two 

more conditions sin a G = sin al&, P = PI (1.19) 

Functions Q, ?&, TX defined by relationships (1.16)-(1.19) satisfy boundary con- 

ditions (1.15). 
The system of Eqs. (1.16)-(1.19) is consistent, and yields two transformations which 

reduce the spatial perturbation problem to the corresponding problem of plane perturba- 
tions (*f. 

In particular, the Grashof and the wave numbers and the layer inclination angle are 

transformed as follows : 
G = G1 I/sin% ~1 + (kl/k,)acosz & 

kr = )Ik,~ + kzS krtga=kztg al (i.20) 

Thus, the critical number G of three-dimensional perturbations at wave numbers k, 

l ) The spectrum branch corresponding to the v,-perturbations is lost in this reduction to 
a plane problem. It is readily ascertained by Eq. (1.6) that such perturbations. as in the 
case considered by Squire El]. become attenuated independently of the basic velocity 
profile. 
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and kz in the case of a layer inclined at angle a to the vertical may be determined from 
formula (1.20). if the critical Grashof number Gr for plane ~rt~batio~ at wave number 
kl in a layer inclined at angle al (different from cc) is known. 

2. We shall consider two particular cases. 

If the layer is horizontal (a = * 90”), the stationary motion velocity vanishes (see 
(1.1)). and the problem reduces to the determination of conditions of equilibrium stabi- 
lity of the horizontal fluid layer heated either from below (a = - 90”) or from above 

(a = 90”). It follows from (1.20) that in this case al = & 90” and G = G1. 

Thus, the critical numbers for spatial and plane perturbations are the same (the known 

degeneration of the Rayleigh instability limit of convection “cells” and ” ridges”). 
In the case of a vertical layer (a = 0) we obtain from formulas (1.20) 

al=O, G=Gl kllk, 
(2.1) 

As k, i kl = k, I (kg2 + k,211h 4 1, hence G >, Gr, i.e. in this case, as in that of 
isothermal motion, higher critical Grashof numbers correspond to three-dimensional 

perturbations, and consequently, plane perturbations (k, = 0) are the more dangerous. 
We shall now consider the case of an arbitrary orientation of the layer. The solution 

of the problem of convective motion stability with respect to plane perturbations was 
derived in [4], where the dependence of the minimum critical Grashof numbers G_ on 

the angle of inclination al and the Prandtl number are given. Critical parameters of 
spatial perturbations can be evaluated and defined by using formulas (1.20). For evalua- 

tion it is convenient to assume parameter a s k, / xl which varies within limits 

0 < a Q 1, as fixed. The value a = 1 corresponds to plane perturbations (ktl = 0 relates 
to ridges with horizontal axes). The value a = 0 corresponds to perturbations periodically 
dependent on the horizontal coordinate y and inde~ndent of 2 (kz = 0 relates to ridges 

the axes of which are parallel to the basic motion velocity). 
In the case of spatial perturbations the relationship G = G(k,, k,) defines the neutral 

surface (an analog of the neutral curve Gl(kl) of plane perturbations). The intersection 

of this surface with the plane passing through axis G corresponds to the fixed value of 
fit and the intersection curve corresponds to the minimum Gm which depends on a and 

a. For given values of a and a the critical numbers G and Gl differ in accordance 

with (1.20) (for all wave numbers) by one and the same factor (sin2a1 + a-* COS%C~)‘~~. 

Thus, operator (1.20) transforms the minimum point Glm of the plane problem neutral 
curve into the same intersection point Cm of the neutral surface. 

Computation results of minimum critical numbers Gm of spatial perturbations are 
shown on Figs. 2 to 4 for various values of parameter a . These computations were made 
for three values of the Prandtl number, using formulas (1.20) and the relationship Gl(kl) 

of r.41. 
The graphs shown in Figs. 2 and 3 relate to Prandtl numbers P = 5 and P = 1. It will 

be seen from these that for a >, O(a vertical layer, or an inclined one with its upper sur- 
face at the higher temperature) the Gm (a) plane perturbations (a = lfare the more dan- 
gerous. If a < 0 (an inclined layer with its lower surface at the higher temperature), the 
spatial perturbations become more dangerous in a wide field of variation of a, with G, 
reaching its absolute minimum at a = 0. As alrea,dy indicated, perturbations periodic 
along the horizontal y -coordinate and independent of a(k, = 0). correspond to the latter 
value of a. 
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TIE critical number G,(a) may be found for this critical limit case directly from the 

general boundary value problem of spatial ~~~ati~, as defined by (1. 5)-(1.10). 
Assuming ?c* = 0 we ob%ain from Eqs. (I.. 5),(1.6), (1.5) and (I, 9) 

- hv* = - p’ + (0,’ - kv%.J - sin aT, -Iv,= - ik,p + (v,,’ - kvavJ 

v+’ + “kvzJv = Q* - XT f GTa’v, = P-‘(T” - kg2T) (24 

with homogeneous boundary CanSSons 

u, -= l$ =T=O [z- &“i) P*J) 

This boundary valne problem is independent of the basic motion profile and coincides 

Fig. 2 

with the Rayleigh problem of perturbations in a sta- 
tionary fluid layer ( ‘). The critical Grashof number, 

derived in the usual manner from the condition 2, =0 

by minimizing G(&,) .is expressed’by 

- G,Psina = 17#/16 (2.4) 

(Factor 1/I6 is consequent to the selection of the 
layer half-width and half the temperature difference 

at its botmdaries, as unit of distance and temperature 

respectively). Thus, for penurbations at kz = 0 we 

have 
C,= 

IO6*7 
--Psin a (2.5) 

Spatial perturbations at kz = 0 correspond to the 
absolute minimum G, in the angle range -90” < 

< a < a,, where a, is defined by the intersection of 

curves G&C) corresponding to parameters a = 0 and 
a = 1. The value of a* depends on the F’randti num- 
her, Qus, for P = 5 and P = i we have respectively 

a, = - 2.Pand a, pi - 13”. With decreasing Prandtl 

number fhe intersection point moves to the Wt. 

l ) If k, ==1 0 , the perturbations are not plane. The velocity component ur is not zero 

and may be found from Eq. (1.7). 
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tending to a* = - 90”. Thus, at sufficiently small Prandtl numbers (see Fig, 4, where 
P = 0.2) the absolute minimum moves towards perturbations at a = 1 (plane perturba- 

tions) for all angles a > - 90° (at a = - 90” the previously mentioned degeneration 

occltis). 
It has been already shown [4], that crisis of a convective flow at various angles of 

Inclination is due to two physically different mechanisms of instability. In the region 
of angles close to -90’ (the Rayleigh region) the crisis is the result of the convective 
instability of the fluid heated from below, while outside of the Rayleigh region it is 
caused by the hydromechanical mechanism of the instability of the two contrary con- 

vective strearr& 

The results of the present investigation of stability with respect to spatial perturbations 
confirm the change of the instability mechanism by a change of the angle of inclination. 

in the Rqleigh region the instability is, in fact, due to spatial perturbations when a = 0; 
the crisis of such perturbations is related to the unstable temperature stratification only, 

and is independent of the fluid stationary motion (the velocity of this motion at angles 

close to - 90’ is low, and this motion itself is hydrodynamically stable). In the case of 
a vertical ‘layer, and even more so at a > 0, this instability can only be caused by the 

instability of the contrary convective streams, and then the plane perturbations (a = 1) 
are the more dangerous. as in the case of plane-parallel flows of an isothermal fluid. 

If the Prandtl number is small (low viscosity), even a small deviation of the layer 
iiom the horizontal position (a 3 - 90”) results in an intensive convective motion, and 
in thX.s case, even at angles close to -90” (i.e. in the Rayleigh region), the lnstabi~~ 
is of a hydrodynamic nature, and related to the development of plane perturbations. 
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